SEARCH SESSIONS
SEARCH SESSIONS

Search All
Refine Results:
 
Year(s)

SOCIAL MEDIA

EMAIL SUBSCRIPTION

 
 

GTC ON-DEMAND

Artificial Intelligence and Deep Learning
Presentation
Media
Abstract:
Convolutional Networks (ConvNets) have become the dominant method for a wide array of computer perception tasks including object detection, object recognition, face recognition, image segmentation, visual navigation, handwriting recognition, as ...Read More
Abstract:

Convolutional Networks (ConvNets) have become the dominant method for a wide array of computer perception tasks including object detection, object recognition, face recognition, image segmentation, visual navigation, handwriting recognition, as well as acoustic modeling for speech recognition and audio processing. ConvNets have been widely deployed for such tasks over the last two years by companies like Facebook, Google, Microsoft, NEC, IBM, Baidu, Yahoo, sometimes with levels of accuracy that rival human performance. ConvNets are composed of multiple layers of filter banks (convolutions) interspersed with point-wise non-linearities and spatial pooling and subsampling operations. ConvNets are a particular embodiment of the concept of "deep learning" in which all the layers in a multi-layer architecture are subject to training. This is unlike more traditional pattern recognition architectures that are composed of a (non-trainable) hand-crafted feature extractor followed by a trainable classifier. Deep learning allows us to train a system end to end, from raw inputs to ultimate outputs, without the need for a separate feature extractor or pre-processor. This presentation will demonstrate several practical applications of ConvNets. ConvNets bring the promise of real-time embedded systems capable of impressive image recognition tasks with applications to smart cameras, and mobile devices, automobiles, and robots.

  Back
 
Topics:
Artificial Intelligence and Deep Learning
Type:
Webinar
Event:
GTC Webinars
Year:
2014
Session ID:
GTCE097
Streaming:
Download:
Share:
 
 
Previous
  • Amazon Web Services
  • IBM
  • Cisco
  • Dell EMC
  • Hewlett Packard Enterprise
  • Inspur
  • Lenovo
  • SenseTime
  • Supermicro Computers
  • Synnex
  • Autodesk
  • HP
  • Linear Technology
  • MSI Computer Corp.
  • OPTIS
  • PNY
  • SK Hynix
  • vmware
  • Abaco Systems
  • Acceleware Ltd.
  • ASUSTeK COMPUTER INC
  • Cray Inc.
  • Exxact Corporation
  • Flanders - Belgium
  • Google Cloud
  • HTC VIVE
  • Liqid
  • MapD
  • Penguin Computing
  • SAP
  • Sugon
  • Twitter
Next