GTC ON-DEMAND

 
SEARCH SESSIONS
SEARCH SESSIONS

Search All
 
Refine Results:
 
Year(s)

SOCIAL MEDIA

EMAIL SUBSCRIPTION

 
 

GTC ON-DEMAND

Computational Physics
Presentation
Media
Revolutionizing Lattice QCD Physics with Heterogeneous Multigrid
Abstract:
Learn how combining GPUs with advanced multi-grid solvers are revolutionizing the study of lattice quantum chromodynamics (LQCD). LQCD is a computational tool for probing nuclear and particle physics, however, it can require thousands of GPUs working in tandem for months due to the computationally prohibitive linear solver. Using the QUDA framework, we describe how the solver can be accelerated using an adaptive multi-grid method. The optimization techniques employed are: fine-grained parallelization, mixed precision, communication reducing solvers, and reformulation of the algorithm to allow the CPU and GPU to work in parallel. Using this multitude of algorithmic innovations, we demonstrate that a 5X speedup can be realized over present state-of-the-art methods using GPUs.
 
Topics:
Computational Physics, Algorithms & Numerical Techniques, Performance Optimization
Type:
Talk
Event:
GTC Silicon Valley
Year:
2016
Session ID:
S6667
Streaming:
Download:
Share: