GTC ON-DEMAND

 
SEARCH SESSIONS
SEARCH SESSIONS

Search All
 
Refine Results:
 
Year(s)

SOCIAL MEDIA

EMAIL SUBSCRIPTION

 
 

GTC ON-DEMAND

Accelerated Data Science
Presentation
Media
Efficient Maximum Flow Algorithm and Applications
Abstract:
Maximizing data flow is one of the most important graph problems and has numerous applications across various computational domains: transportation networks, power routing, image segmentation, social network clustering, and recommendation systems. There are many efficient algorithms that have been developed for this problem, most of them trying to minimize computational complexity. However, not all these algorithms map well to massively parallel architectures like GPUs. We'll present a novel GPU-friendly approach based on the MPM algorithm that achieves from 5 to 20 times speedup over the state-of-the-art multithreaded CPU implementation from Galois library on general graphs with various diameters. We'll also discuss some real-world applications of the maximum flow problem in computer vision for image segmentation and in data analytics to find communities in social networks.
 
Topics:
Accelerated Data Science, Algorithms & Numerical Techniques
Type:
Talk
Event:
GTC Silicon Valley
Year:
2017
Session ID:
S7370
Download:
Share: