GTC ON-DEMAND

 
SEARCH SESSIONS
SEARCH SESSIONS

Search All
 
Refine Results:
 
Year(s)

SOCIAL MEDIA

EMAIL SUBSCRIPTION

 
 

GTC ON-DEMAND

AI & Deep Learning Research
Presentation
Media
Multi-Resolution 3D-Convolutional Neural Network for Object Recognition
Abstract:
Voxelized representation of 3D objects is commonly used for training 3D-Convolutional Neural Networks for object detection and classification. However, high-resolution voxelization of CAD models are memory intensive and hence, it is not possible to load multiple models in the GPU for training. We have developed a GPU-accelerated voxelization technique that generates multi-level voxel grids of 3D objects. Instead of creating a single high-resolution voxel grid for the whole object, this technique generates selective region-based high-resolution voxel grids to represent detailed features in the object. We have also developed a multi-resolution 3D-Convolutional Neural Network that uses this hybrid voxelization for accurate object recognition and classification.
 
Topics:
AI & Deep Learning Research, Industrial Inspection, Computer Vision
Type:
Talk
Event:
GTC Silicon Valley
Year:
2018
Session ID:
S8389
Streaming:
Download:
Share: