GTC ON-DEMAND

 
SEARCH SESSIONS
SEARCH SESSIONS

Search All
 
Refine Results:
 
Year(s)

SOCIAL MEDIA

EMAIL SUBSCRIPTION

 
 

GTC ON-DEMAND

Deep Learning & AI Frameworks
Presentation
Media
Using Tensor Swapping and NVLink to Overcome GPU Memory Limits with TensorFlow
Abstract:
We will explore the advantages of combining a model graph that swaps tensors between Volta GPUs with system memory that uses NVLink 2.0 connections between the GPUs and the system cores. GPU memory size can limit model size, image resolution, and batch sizes in neural network training. We'll show how get around those limitations. Our method uses both a graph modification library that adds tensor swap-in/swap-out operations to the graph and NVLink 2.0 connections to system cores and memory to quickly train with models, image resolutions, and batch sizes that were previously impossible. We'll also compare the graph modification module, system architecture, and performance results with standard benchmarks and other models.
 
Topics:
Deep Learning & AI Frameworks, AI & Deep Learning Research, Performance Optimization
Type:
Talk
Event:
GTC Silicon Valley
Year:
2019
Session ID:
S9426
Streaming:
Download:
Share: