GTC ON-DEMAND

 
SEARCH SESSIONS
SEARCH SESSIONS

Search All
 
Refine Results:
 
Year(s)

SOCIAL MEDIA

EMAIL SUBSCRIPTION

 
 

GTC ON-DEMAND

Presentation
Media
Abstract:
The chemical shift of a protein structure offers a lot of information about the physical properties of the protein. Being able to accurately predict this shift is essential in drug discovery and in some other areas of molecular dynamics research. But because chemical shift prediction algorithms are so computationally intensive, no application can predict chemical shift of large protein structures in a realistic amount of time. We explored this problem by taking an algorithm called PPM_One and ported it to NVIDIA V100 GPUs using the directive-based programming model, OpenACC. When testing several different protein structures of datasets ranging from 1M to 11M atoms we observed ~45X average speedup between the datasets and a maximum of a 61X speedup. We'll discuss techniques to overcome programmatic challenges and highlight the scientific advances enabled by the model OpenACC.
The chemical shift of a protein structure offers a lot of information about the physical properties of the protein. Being able to accurately predict this shift is essential in drug discovery and in some other areas of molecular dynamics research. But because chemical shift prediction algorithms are so computationally intensive, no application can predict chemical shift of large protein structures in a realistic amount of time. We explored this problem by taking an algorithm called PPM_One and ported it to NVIDIA V100 GPUs using the directive-based programming model, OpenACC. When testing several different protein structures of datasets ranging from 1M to 11M atoms we observed ~45X average speedup between the datasets and a maximum of a 61X speedup. We'll discuss techniques to overcome programmatic challenges and highlight the scientific advances enabled by the model OpenACC.  Back
 
Topics:
Computational Biology & Chemistry
Type:
Talk
Event:
GTC Silicon Valley
Year:
2019
Session ID:
S9277
Streaming:
Download:
Share:
 
 
Previous
  • Amazon Web Services
  • IBM
  • Cisco
  • Dell EMC
  • Hewlett Packard Enterprise
  • Inspur
  • Lenovo
  • SenseTime
  • Supermicro Computers
  • Synnex
  • Autodesk
  • HP
  • Linear Technology
  • MSI Computer Corp.
  • OPTIS
  • PNY
  • SK Hynix
  • vmware
  • Abaco Systems
  • Acceleware Ltd.
  • ASUSTeK COMPUTER INC
  • Cray Inc.
  • Exxact Corporation
  • Flanders - Belgium
  • Google Cloud
  • HTC VIVE
  • Liqid
  • MapD
  • Penguin Computing
  • SAP
  • Sugon
  • Twitter
Next