GTC ON-DEMAND

 
SEARCH SESSIONS
SEARCH SESSIONS

Search All
 
Refine Results:
 
Year(s)

SOCIAL MEDIA

EMAIL SUBSCRIPTION

 
 

GTC ON-DEMAND

Presentation
Media
Abstract:
Learn how to adopt a MATLAB-centric workflow to design, develop, and deploy computer vision and deep learning applications on to GPUs whether on your desktop, a cluster, or on embedded Tegra platforms, including Jetson TK1/TX1 and DRIVE PX boards. The workflow starts with algorithm design in MATLAB, which enjoys universal appeal among engineers and scientists because of its expressive power and ease of use. The algorithm may employ deep learning networks augmented with traditional computer vision techniques and can be tested and verified within MATLAB. Next, those networks are trained using MATLAB's GPU and parallel computing support either on the desktop, a local compute cluster, or in the cloud. Finally, a compiler auto-generates portable and optimized CUDA code from the MATLAB algorithm, which is then cross-compiled and deployed to the Tegra board. We'll use examples of common computer vision algorithms and deep learning networks to describe this workflow, and we'll present their performance benchmarks, including training with multiple GPUs on an Amazon P2 cloud instance.
Learn how to adopt a MATLAB-centric workflow to design, develop, and deploy computer vision and deep learning applications on to GPUs whether on your desktop, a cluster, or on embedded Tegra platforms, including Jetson TK1/TX1 and DRIVE PX boards. The workflow starts with algorithm design in MATLAB, which enjoys universal appeal among engineers and scientists because of its expressive power and ease of use. The algorithm may employ deep learning networks augmented with traditional computer vision techniques and can be tested and verified within MATLAB. Next, those networks are trained using MATLAB's GPU and parallel computing support either on the desktop, a local compute cluster, or in the cloud. Finally, a compiler auto-generates portable and optimized CUDA code from the MATLAB algorithm, which is then cross-compiled and deployed to the Tegra board. We'll use examples of common computer vision algorithms and deep learning networks to describe this workflow, and we'll present their performance benchmarks, including training with multiple GPUs on an Amazon P2 cloud instance.  Back
 
Topics:
Tools & Libraries, Artificial Intelligence and Deep Learning, Intelligent Machines, IoT & Robotics
Type:
Talk
Event:
GTC Silicon Valley
Year:
2017
Session ID:
S7244
Download:
Share:
 
 
Previous
  • Amazon Web Services
  • IBM
  • Cisco
  • Dell EMC
  • Hewlett Packard Enterprise
  • Inspur
  • Lenovo
  • SenseTime
  • Supermicro Computers
  • Synnex
  • Autodesk
  • HP
  • Linear Technology
  • MSI Computer Corp.
  • OPTIS
  • PNY
  • SK Hynix
  • vmware
  • Abaco Systems
  • Acceleware Ltd.
  • ASUSTeK COMPUTER INC
  • Cray Inc.
  • Exxact Corporation
  • Flanders - Belgium
  • Google Cloud
  • HTC VIVE
  • Liqid
  • MapD
  • Penguin Computing
  • SAP
  • Sugon
  • Twitter
Next