GTC ON-DEMAND

 
SEARCH SESSIONS
SEARCH SESSIONS

Search All
 
Refine Results:
 
Year(s)

SOCIAL MEDIA

EMAIL SUBSCRIPTION

 
 

GTC ON-DEMAND

Presentation
Media
Abstract:

Through the application of artificial intelligence and deep learning, "computing at the edge" is changing how safety systems are detecting, capturing, analyzing, and applying reasoning to events. Using real-time analysis of the data from cameras and inertial sensors mounted on a vehicle, we can not only detect unsafe driving events but also analyze the chain of events that lead to unsafe situations. We can recognize driver's positive performance in addition to areas where best practices need to be reinforced. Power-efficient and powerful deep learning processors enable us to process all of this data in real time at the edge of the network. This allows us to create an accurate and comprehensive record of driving performance that fleet managers can use to create incentives for safer driving. Insurance companies can also use this information to set proper premiums customized for individual drivers and potentially adjusted dynamically to reflect the driving environment. 

Through the application of artificial intelligence and deep learning, "computing at the edge" is changing how safety systems are detecting, capturing, analyzing, and applying reasoning to events. Using real-time analysis of the data from cameras and inertial sensors mounted on a vehicle, we can not only detect unsafe driving events but also analyze the chain of events that lead to unsafe situations. We can recognize driver's positive performance in addition to areas where best practices need to be reinforced. Power-efficient and powerful deep learning processors enable us to process all of this data in real time at the edge of the network. This allows us to create an accurate and comprehensive record of driving performance that fleet managers can use to create incentives for safer driving. Insurance companies can also use this information to set proper premiums customized for individual drivers and potentially adjusted dynamically to reflect the driving environment. 

  Back
 
Topics:
Intelligent Video Analytics, Autonomous Vehicles, Federal, Artificial Intelligence and Deep Learning
Type:
Talk
Event:
GTC Silicon Valley
Year:
2017
Session ID:
S7661
Download:
Share:
 
 
Previous
  • Amazon Web Services
  • IBM
  • Cisco
  • Dell EMC
  • Hewlett Packard Enterprise
  • Inspur
  • Lenovo
  • SenseTime
  • Supermicro Computers
  • Synnex
  • Autodesk
  • HP
  • Linear Technology
  • MSI Computer Corp.
  • OPTIS
  • PNY
  • SK Hynix
  • vmware
  • Abaco Systems
  • Acceleware Ltd.
  • ASUSTeK COMPUTER INC
  • Cray Inc.
  • Exxact Corporation
  • Flanders - Belgium
  • Google Cloud
  • HTC VIVE
  • Liqid
  • MapD
  • Penguin Computing
  • SAP
  • Sugon
  • Twitter
Next