GTC ON-DEMAND

 
SEARCH SESSIONS
SEARCH SESSIONS

Search All
 
Refine Results:
 
Year(s)

SOCIAL MEDIA

EMAIL SUBSCRIPTION

 
 

GTC ON-DEMAND

Presentation
Media
Abstract:

Network defense and cybersecurity applications traditionally rely on heuristics and signatures to protect networks and detect anomalies. Large companies may generate over 10TB of data daily, spread across different sensors and heterogenous data types. The difficulty of providing timely ingest, feature engineering, feature exploration, and model generation has made signature-based detection the only option. We'll show how to use RAPIDS and GPU acceleration to overcome these obstacles. We'll walk through data engineering steps involving large amounts of heterogeneous data (both source and format) and explore how GPUs can accelerate feature exploration and hyperparameter selection. This enables more in-house data scientists and information security experts to use internally collected data to generate predictive models for anomaly detection rather than rely on signature-based detection.

Network defense and cybersecurity applications traditionally rely on heuristics and signatures to protect networks and detect anomalies. Large companies may generate over 10TB of data daily, spread across different sensors and heterogenous data types. The difficulty of providing timely ingest, feature engineering, feature exploration, and model generation has made signature-based detection the only option. We'll show how to use RAPIDS and GPU acceleration to overcome these obstacles. We'll walk through data engineering steps involving large amounts of heterogeneous data (both source and format) and explore how GPUs can accelerate feature exploration and hyperparameter selection. This enables more in-house data scientists and information security experts to use internally collected data to generate predictive models for anomaly detection rather than rely on signature-based detection.

  Back
 
Topics:
Accelerated Data Science, Cyber Security
Type:
Tutorial
Event:
GTC Silicon Valley
Year:
2019
Session ID:
S9803
Streaming:
Download:
Share:
 
 
Previous
  • Amazon Web Services
  • IBM
  • Cisco
  • Dell EMC
  • Hewlett Packard Enterprise
  • Inspur
  • Lenovo
  • SenseTime
  • Supermicro Computers
  • Synnex
  • Autodesk
  • HP
  • Linear Technology
  • MSI Computer Corp.
  • OPTIS
  • PNY
  • SK Hynix
  • vmware
  • Abaco Systems
  • Acceleware Ltd.
  • ASUSTeK COMPUTER INC
  • Cray Inc.
  • Exxact Corporation
  • Flanders - Belgium
  • Google Cloud
  • HTC VIVE
  • Liqid
  • MapD
  • Penguin Computing
  • SAP
  • Sugon
  • Twitter
Next