SEARCH SESSIONS

Search All
 
Refine Results:
 
Year(s)

SOCIAL MEDIA

EMAIL SUBSCRIPTION

 
 

GTC ON-DEMAND

Presentation
Media
Abstract:
We''ll show how generative adversarial networks (GANs) running on GPUs are about to revolutionize mass customization of patient-specific products at Glidewell Dental. Every day, our labs produce thousands of patient-specific items, such as dental restorations, implants, and appliances. To deliver functional and aesthetic products, high levels of precision and consistency are essential. Traditionally, dental restoration design and manufacturing process was very labor intensive and required highly skilled dental professionals. Today, with the advances in CAD/CAM, the amount of manual labor has been significantly reduced; however, there are still many aspects of the process that require human intervention due to the fact that some of these aspects are hard to formalize and therefore impossible to automate with traditional tools. The convergence of several technologies, such as deep learning, GPGPU, and cloud computing, has allowed us to effectively train generative models on historical data. These models are now capable of automatically generating high-quality patient-specific designs.
We''ll show how generative adversarial networks (GANs) running on GPUs are about to revolutionize mass customization of patient-specific products at Glidewell Dental. Every day, our labs produce thousands of patient-specific items, such as dental restorations, implants, and appliances. To deliver functional and aesthetic products, high levels of precision and consistency are essential. Traditionally, dental restoration design and manufacturing process was very labor intensive and required highly skilled dental professionals. Today, with the advances in CAD/CAM, the amount of manual labor has been significantly reduced; however, there are still many aspects of the process that require human intervention due to the fact that some of these aspects are hard to formalize and therefore impossible to automate with traditional tools. The convergence of several technologies, such as deep learning, GPGPU, and cloud computing, has allowed us to effectively train generative models on historical data. These models are now capable of automatically generating high-quality patient-specific designs.  Back
 
Topics:
Advanced AI Learning Techniques, Consumer Engagement and Personalization
Type:
Talk
Event:
GTC Silicon Valley
Year:
2018
Session ID:
S8155
Streaming:
Download:
Share:
 
Abstract:

Learn about the unique challenges being solved using deep learning on GPUs in a large-scale mass customization of medical devices. Deep neural networks have been successfully applied to some of the most difficult problems in computer vision, natural language processing, and robotics. But we still haven't seen the full potential of this technology used in manufacturing. Glidewell Labs daily produces thousands of patient specific items, such as dental restorations, implants, and appliances. Our goal is to make high-quality restorative dentistry affordable to more patients. This goal can only be achieved with flexible, highly autonomous CAD/CAM systems, which rely on AI for real-time decision making.

Learn about the unique challenges being solved using deep learning on GPUs in a large-scale mass customization of medical devices. Deep neural networks have been successfully applied to some of the most difficult problems in computer vision, natural language processing, and robotics. But we still haven't seen the full potential of this technology used in manufacturing. Glidewell Labs daily produces thousands of patient specific items, such as dental restorations, implants, and appliances. Our goal is to make high-quality restorative dentistry affordable to more patients. This goal can only be achieved with flexible, highly autonomous CAD/CAM systems, which rely on AI for real-time decision making.

  Back
 
Topics:
AEC & Manufacturing, Deep Learning and AI, Healthcare and Life Sciences
Type:
Talk
Event:
GTC Silicon Valley
Year:
2017
Session ID:
S7114
Download:
Share: