Abstract:
This customer panel brings together A.I. implementers who have deployed deep learning at scale using NVIDIA DGX Systems. We'll focus on specific technical challenges we faced, solution design considerations, and best practices learned from implementing our respective solutions. Attendees will gain insights such as: 1) how to set up your deep learning project for success by matching the right hardware and software platform options to your use case and operational needs; 2) how to design your architecture to overcome unnecessary bottlenecks that inhibit scalable training performance; and 3) how to build an end-to-end deep learning workflow that enables productive experimentation, training at scale, and model refinement.
This customer panel brings together A.I. implementers who have deployed deep learning at scale using NVIDIA DGX Systems. We'll focus on specific technical challenges we faced, solution design considerations, and best practices learned from implementing our respective solutions. Attendees will gain insights such as: 1) how to set up your deep learning project for success by matching the right hardware and software platform options to your use case and operational needs; 2) how to design your architecture to overcome unnecessary bottlenecks that inhibit scalable training performance; and 3) how to build an end-to-end deep learning workflow that enables productive experimentation, training at scale, and model refinement.
Back
Topics:
AI Application, Deployment & Inference, AI & Deep Learning Business Track (High Level), Data Center & Cloud Infrastructure, HPC and Supercomputing
Event:
GTC Silicon Valley