GTC ON-DEMAND

 
SEARCH SESSIONS
SEARCH SESSIONS

Search All
 
Refine Results:
 
Year(s)

SOCIAL MEDIA

EMAIL SUBSCRIPTION

 
 

GTC ON-DEMAND

Presentation
Media
Abstract:
We'll describe recent work to map comparative genomics algorithms to GPU-accelerated leadership-class systems. The explosion in availability of genomic data holds promise for enabling determination of the genetic causes of phenotypic characteristics, with applications to problems such as the discovery of the genetic roots of diseases. The growing sizes of these datasets and the quadratic and cubic scaling properties of the algorithms necessitate use of leadership-scale accelerated computing. We'll discuss the mapping of two-way and three-way algorithms for comparative genomics calculations to large-scale GPU-accelerated systems. Focusing primarily on the Proportional Similarity metric and the Custom Correlation Coefficient, we'll discuss issues of optimal mapping of the algorithms to GPUs, eliminating redundant calculations due to symmetries, and efficient mapping to many-node parallel systems. We'll also present results scaled to thousands of GPUs on the ORNL Titan system.
We'll describe recent work to map comparative genomics algorithms to GPU-accelerated leadership-class systems. The explosion in availability of genomic data holds promise for enabling determination of the genetic causes of phenotypic characteristics, with applications to problems such as the discovery of the genetic roots of diseases. The growing sizes of these datasets and the quadratic and cubic scaling properties of the algorithms necessitate use of leadership-scale accelerated computing. We'll discuss the mapping of two-way and three-way algorithms for comparative genomics calculations to large-scale GPU-accelerated systems. Focusing primarily on the Proportional Similarity metric and the Custom Correlation Coefficient, we'll discuss issues of optimal mapping of the algorithms to GPUs, eliminating redundant calculations due to symmetries, and efficient mapping to many-node parallel systems. We'll also present results scaled to thousands of GPUs on the ORNL Titan system.  Back
 
Topics:
Computational Biology & Chemistry, Algorithms & Numerical Techniques
Type:
Talk
Event:
GTC Silicon Valley
Year:
2017
Session ID:
S7156
Download:
Share:
 
 
Previous
  • Amazon Web Services
  • IBM
  • Cisco
  • Dell EMC
  • Hewlett Packard Enterprise
  • Inspur
  • Lenovo
  • SenseTime
  • Supermicro Computers
  • Synnex
  • Autodesk
  • HP
  • Linear Technology
  • MSI Computer Corp.
  • OPTIS
  • PNY
  • SK Hynix
  • vmware
  • Abaco Systems
  • Acceleware Ltd.
  • ASUSTeK COMPUTER INC
  • Cray Inc.
  • Exxact Corporation
  • Flanders - Belgium
  • Google Cloud
  • HTC VIVE
  • Liqid
  • MapD
  • Penguin Computing
  • SAP
  • Sugon
  • Twitter
Next